Enhanced photodynamic efficacy and efficient delivery of Rose Bengal using nanostructured poly(amidoamine) dendrimers: potential application in photodynamic therapy of cancer
نویسندگان
چکیده
Photodynamic therapy (PDT) is a promising treatment methodology whereby diseased cells and tissues are destroyed by reactive oxygen species (ROS) by using a combination of light and photosensitizers (PS). The medical application of Rose Bengal (RB), photosensitizer with very good ROS generation capability, is limited due to its intrinsic toxicity and insufficient lipophilicity. In this report, we evaluate the potential of polyamidoamine (PAMAM) dendrimers in delivering RB and its phototoxic efficiency towards a model cancer cell line. The spherical, nanoscaled dendrimers could efficiently encapsulate RB and showed characteristic spectral responses. The controlled release property of dendrimer-RB formulation was clearly evident from the in vitro drug release study. ROS generation was confirmed in dendrimer-RB system upon white light illumination. Photosensitization of Dalton's Lymphoma Ascite (DLA) cells incubated with dendrimer-RB formulation caused remarkable photocytotoxicity. Importantly, the use of dendrimer-based delivery system reduced the dark toxicity of RB.
منابع مشابه
Evaluation of the Photostability and Photodynamic Efficacy of Rose Bengal Loaded in Multivesicular Liposomes
Purpose: Rose Bengal (RB) is a potential photodynamic sensitizer in anticancer therapy. The purpose of this study was to prepare multivesicular liposomes (MVL) loaded with RB to enhance its photostability and intracellulaer photodynamic efficacy. Methods: Four MVL-RB formulations were prepared by reverse phase evaporation technique using a double emulsion method. The photostability of RB in pho...
متن کاملNanotechnology-Based Drug Delivery Systems for Photodynamic Therapy of Cancer: A Review.
Photodynamic therapy (PDT) is a promising alternative approach for improved cancer treatment. In PDT, a photosensitizer (PS) is administered that can be activated by light of a specific wavelength, which causes selective damage to the tumor and its surrounding vasculature. The success of PDT is limited by the difficulty in administering photosensitizers (PSs) with low water solubility, which co...
متن کاملPhotosensitizer and peptide-conjugated PAMAM dendrimer for targeted in vivo photodynamic therapy
Challenges in photodynamic therapy (PDT) include development of efficient near infrared-sensitive photosensitizers (5,10,15,20-tetrakis(4-hydroxyphenyl)-21H,23H-porphine [PS]) and targeted delivery of PS to the tumor tissue. In this study, a dual functional dendrimer was synthesized for targeted PDT. For targeting, a poly(amidoamine) dendrimer (G4) was conjugated with a PS and a nitrilotriaceti...
متن کاملRose-bengal-conjugated gold nanorods for in vivo photodynamic and photothermal oral cancer therapies.
Gold nanorods (GNRs) conjugated with rose bengal (RB) molecules exhibit efficient singlet oxygen generation when illuminated by 532 nm green light and high photothermal efficiency under 810 nm near-infrared (NIR) irradiation. In vitro experiments show that reactive oxygen species generated by green light and hyperthermia produced by NIR light constitute two different mechanisms for cancer cell ...
متن کاملA multifunctional nanoplatform based on mesoporous silica nanoparticles for imaging-guided chemo/photodynamic synergetic therapy
Multifunctional nanoplatforms based onmesoporous silica nanoparticles (MSNs) have recently shown great promise in drug delivery and therapy. Herein, a multifunctional nanoplatform based on MSNs is fabricated by a modified micro-emulsion method for drug delivery and imaging-guided chemo/photodynamic synergistic therapy. Carbon dots (C-dots) and a photosensitizer, rose bengal (RB), are embedded i...
متن کامل